Literatur

blank
Vertical 1

1. Ochs J, Berger M, Harnisch E, Helden J von, Jung S, Kostyszyn K, Krauß J, König N, Ska-zik-Voogt C (2019) Produktionsstrategien für die Medizintechnik von morgen. Trendreport. Fraunhofer-Institut für Produktionstechnologie IPT, Aachen

2. Grün NG (2018) Resorbierbare Implantate in der Unfallchirurgie. Journal für Mineralstoff-wechsel & muskuloskelettale Erkrankungen:1–8. doi:10.1007/s41970-018-0041-6

3. Hurschler C, Windhagen H, Correa T, Weizbauer A (2013) Neue Materialien für eine bes-sere Patientenversorgung. Trauma Berufskrankh 15(4):259–265. doi:10.1007/s10039-013-2042-6

4. Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, Tümer N, Schröder K-U, Mol JMC, Weinans H, Jahr H, Zadpoor AA (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392. doi:10.1016/j.actbio.2017.12.008

5. BVMed (2020) Branchenbericht Medizintechnologien 2020

6. Eigner M, Roubanov D, Zafirov R (Hrsg) (2014) Modellbasierte virtuelle Produktentwicklung, 2014. Aufl. Springer Berlin Heidelberg, Berlin, Heidelberg

7. Eigner M, Dickopf M, Huwig K An interdischiplinary model-based design approach for deve-loping cybertronic systems Design 2016, DS 84, S 1647–1656

8. Friedenthal S (2015) A practical guide to SysML. The systems modeling language. Morgan Kaufman, Waltham, MA

9. Österle H (1995) Entwurfstechniken, 2. Aufl. Business engineering, Prozeß- und Syste-mentwicklung; Geschäftsstrategie, Prozeß, Informationssystem / Hubert Österle … ; Bd. 1. Springer, Berlin

10. Gadatsch A (2015) Geschäftsprozesse analysieren und optimieren. Praxistools zur Analyse, Optimierung und Controlling von Arbeitsabläufen. essentials. Springer Vieweg, Wies-baden

11. Alt O (2012) Modellbasierte Systementwicklung mit SysML. Carl Hanser Fachbuchverlag, München

12. Matthiesen S, Albers A, Moeser G, Schmidt S, Bursac N Model-Based Systems Enginee-ring (MBSE) in der Karlsruher Schule: Neue Lehrkonzepte für die Aus- und Weiterbildung im Bereich MBSE develop^3 systems engineering, 02/2016, S 38–41

13. Torry-Smith JM, Mortensen NH, Ploug O, Achiche S (2015) Industrial application of a mech-atronic framework. In: Weber C, Husung S, Cascini G, Cantamessa M, Marjanovic D, Rotini F (Hrsg) Product modularisation, product architecture, systems engineering, product service systems, 80-7. Design Society, Glasgow, S 247–258

14. Andrae R, Köhler P (2016) Wissensbasierte Unterstützung des Konstrukteurs an der Schnittstelle CAD-CAE. In: Brökel K, Feldhusen J, Grote K-H, Rieg F, Stelzer R, Köhler P, Müller N, Scharr G (Hrsg) 14. Gemeinsames Kolloquium Konstruktionstechnik 2016. Tradi-tio et Innovatio – Entwicklung und Konstruktion, am 6. und 7. Oktober 2016 in Rostock : Ta-gungsband. Shaker Verlag, Aachen, S 59–68

15. Kößler J, Paetzold K (2015) Support of the system integration with automatically generated behaviour models. In: Weber C, Husung S, Cascini G, Cantamessa M, Marjanovic D, Bor-degoni M (Hrsg) Human behaviour in design, design education, 80-11. Design Society, Glasgow, S 21–30

16. Mauser K, Breitsprecher T, Hasse A, Wartzack S (2015) Taking into account the change of geometry in system simulation processes. In: Weber C, Husung S, Cantamessa M, Cascini G, Marjanovic D, Graziosi S (Hrsg) Design for life. The 20th International Conference on Engineering Design (ICED 15); 27th – 30th July 2015, Politecnico di Milano, Italy, 80-6. De-sign Society, Glasgow, S 153–162

17. Pinquié R, Micouin P, Véron P, Segonds F (2016) Property Model Methodology: a case study with Modelica. Unpublished

18. Motamedian B (2013) MBSE Applicability Analysis International Journal of Scientific and Engineering Research, Bd 2, S 1–7

19. Drave I, Rumpe B, Wortmann A, Berroth J, Hoepfner G, Jacobs G, Spuetz K, Zerwas T, Guist C, Kohl J (10162020) Modeling mechanical functional architectures in SysML. In: Syri-ani E, Sahraoui H (Hrsg) Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems. ACM, New York, NY, USA, S 79–89

20. Zerwas T, Jacobs G, Spütz K, Höpfner G, Drave I, Berroth J, Guist C, Konrad C, Rumpe B, Kohl J (2021) Mechanical concept development using principle solution models. IOP Conf. Ser.: Mater. Sci. Eng. 1097(1):12001. doi:10.1088/1757-899X/1097/1/012001

21. Höpfner G, Jacobs G, Zerwas T, Drave I, Berroth J, Guist C, Rumpe B, Kohl J (2021) Model-Based Design Workflows for Cyber-Physical Systems Applied to an Electric-Mechan-ical Coolant Pump. IOP Conf. Ser.: Mater. Sci. Eng. 1097(1):12004. doi:10.1088/1757-899X/1097/1/012004

22. Katzwinkel T, Jacobs G, Fürstenberg F von, Konrad C, Berroth JK (2018) MBSE on para-meter level Berechnung und Simulation: Anwendungen, Entwicklungen, Trends. NAFEMS

18 DACH Conference : 14-16 May, Bamberg, Germany : conference proceedings. NAFEMS Deutschland Österreich Schweiz GmbH, Grafing, Germany, S 129–132

23. Konrad C, Jacobs G, Rasor R, Riedel R, Katzwinkel T, Siebrecht J (2019) Enabling com-plexity management through merging business process modeling with MBSE. Procedia CIRP 84(3):451–456. doi:10.1016/j.procir.2019.04.267

24. Riedel R, Jacobs G, Konrad C, Singh R, Sprehe J (2020) Managing knowledge and param-eter dependencies with MBSE in textile product development processes. Procedia CIRP 91(4):170–175. doi:10.1016/j.procir.2020.01.138

25. Greinert M, Holtmann J (2017) Anwendung von Methoden der Produktentstehung auf Basis des Systemmodells mechatronischer Systeme. In: Schulze S-O, Tschirner C, Kaffenberger R, Ackva S (Hrsg) Tag des Systems Engineering, Herzogenaurach, 25.-27. Oktober 2016. Hanser, München, S 77–86

26. Jaeger M, Drichel P, Schröder M, Berroth J, Jacobs G, Hameyer K (2020) Die Kopplung elektrotechnischer und strukturdynamischer Domänen zu einem NVH-Systemmodell eines elektrischen Antriebsstrangs. Elektrotech. Inftech. 137(4-5):258–265. doi:10.1007/s00502-020-00802-z

27. Eigner M, Koch W, Muggeo C (Hrsg) (2017) Modellbasierter Entwicklungsprozess cybertro-nischer Systeme. Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme. Springer Vieweg, Berlin

28. Weilkiens T, Soley RM (2014) Systems Engineering mit SysML/UML. Anforderungen, Ana-lyse, Architektur, 3. Aufl. dpunkt.verl., Heidelberg

29. Grundel M, Abulawi J, Moeser G, Weilkiens T, Scheithauer A, Kleiner S, Kramer C, Neubert M, Kümpel S, Albers A (2015) FAS4M – No more: “Please mind the gap!”. In: Maurer M, Schulze S-O, Abulawi J (Hrsg) Tag des Systems Engineering. Bremen, 12. – 14. November 2014 ; [TdSE. Hanser, München, S 63–74

30. Andres M, Bockmair M (2017) Ausführbare Spezifikation – Berechnungen von komplexen Systemzusammenhängen. In: Schulze S-O, Tschirner C, Kaffenberger R, Ackva S (Hrsg) Tag des Systems Engineering. Paderborn, 8. -10. November 2017. Carl Hanser Verlag GmbH & Co. KG, München, S 167–170

31. Blumör A, Pregitzer G, Bothen M (2017) Werkzeuge für die Entwicklung mechatronischer Systeme mit Methoden des MBSE. In: Schulze S-O, Tschirner C, Kaffenberger R, Ackva S (Hrsg) Tag des Systems Engineering. Paderborn, 8. -10. November 2017. Carl Hanser Ver-lag GmbH & Co. KG, München, S 191–202

32. Katzwinkel T, Löwer M (2019) MBSE basierter Wissensspeicher zur Vereinfachung der Ri-sikobewertung in der Konstruktion. In: Schlüter N, Reiche M (Hrsg) Herausforderungen im Umgang mit Anforderungen in Zeiten des industriellen Wandels. Shaker Verlag, Düren, S 141–156

33. Hillenbrand M (2012) Funktionale Sicherheit nach ISO 26262 in der Konzeptphase der Ent-wicklung von Elektrik/Elektronik Architekturen von Fahrzeugen. Zugl.: Karlsruhe, KIT, Diss., 2011. Steinbuch series on advances in information technology, Bd 4. Technische Informati-onsbibliothek u. Universitätsbibliothek; KIT Scientific Publishing, Hannover, Karlsruhe

34. (2017) Verordnung (EU) 2017/745 des europäischen Parmalents und des Rates vom 5. Ap-ril 2017 über Medizinprodukte. MDR Amtsbaltt der Europäischen Union

35. DGQ Arbeitsgruppe 131 (2012) FMEA – Fehlermöglichkeits- und Einflussanalyse, 5. Aufl. Qualitätsplanung, Qualitätslenkung, 13-11. Beuth, Berlin, Wien, Zürich

36. IEC (2006). Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA), 2. Aufl (60812)

37. DIN DIN EN ISO 14971:2020-07, Medizinprodukte_- Anwendung des Risikomanagements auf Medizinprodukte (ISO_14971:2019); Deutsche Fassung EN_ISO_14971:2019. Beuth Verlag GmbH, Berlin. doi:10.31030/3062541

38. AIAG & VDA (2019) FMEA-Handbuch. Fehler-Möglichkeits- und Einfluss-Analyse : Design-FMEA, Prozess-FMEA, FMEA-Ergänzung – Monitoring & Systemreaktion, 1. Aufl. VDA, Ver-band der Automobilindustrie, Berlin, Germany

39. DIN DIN EN 60812:2006-11, Analysetechniken für die Funktionsfähigkeit von Systemen_- Verfahren für die Fehlzustandsart- und -auswirkungsanalyse (FMEA) (IEC_60812:2006); Deutsche Fassung EN_60812:2006. Beuth Verlag GmbH, Berlin. doi:10.31030/9771315

40. Verband der Automobilindustrie e.V. (2006) Qualitätskontrolle in der Automobilindustrie: 4 – Sicherung der Qualität vor Serieneinsatz, 2. Aufl, Frankfurt

41. Brüggemann H, Bremer P (2015) Grundlagen Qualitätsmanagement. Von den Werkzeugen über Methoden zum TQM, 2. Aufl. Lehrbuch. Springer Vieweg, Wiesbaden

42. Pfeifer T, Schmitt R (2014) Masing Handbuch Qualitätsmanagement, 1. Aufl. Carl Hanser Fachbuchverlag, s.l.

43. Theden P, Colsman H (2013) Qualitätstechniken. Werkzeuge zur Problemlösung und stän-digen Verbesserung, 5. Aufl. Pocket-Power, Bd 2. Hanser, München

44. Pfeufer H-J (2015) FMEA. Fehler-Möglichkeits- und Einfluss-Analyse, 1. Aufl. Pocket Power, Bd 64. Hanser, München

45. Schumann R, Reinhardt P (2018) Augmented Reality in der Medizin – und darüber hinaus. https://www.devicemed.de/augmented-reality-in-der-medizin-und-darueber-hinaus-a-786104/. Zugegriffen: 30. März 2021

46. Kuhn S, Huettl F, Deutsch K, Kirchgässner E, Huber T, Kneist W (2021) Chirurgische Aus-bildung im digitalen Zeitalter – Virtual Reality, Augmented Reality und Robotik im Medizin-studium. Zentralbl Chir 146(1):37–43. doi:10.1055/a-1265-7259

47. Oppermann B, Schwab S, Engel D (2019) Augmented Reality und 3D-Druck vor der OP. Modelle für die Chirurgie. https://medizin-und-technik.industrie.de/medizin/augmented-rea-lity-und-3d-druck-vor-der-op/. Zugegriffen: 30. März 2021

Vertical 2
[1] M. Sugimoto, N. Gotohda, Y. Kato, et al., „Risk factor analysis and prevention of postoperative pancreatic fistula after distal pancreatectomy with stapler use,“ Journal of hepato-biliary-pancreatic sciences, vol. 20, no. 5, pp. 538–544, 2013.

[2] T. Leypold, B. Schäfer, A. M. Boos, J. P. Beier, „Plastic Surgery Reconstruction of Chronic/Non-Healing Wounds,“ Surgical Technology International, no. 38, 2020.

[3] B. Kuehlmann, R. Burkhardt, N. Kosaric, L. Prantl, „Capsular fibrosis in aesthetic and reconstructive-cancer patients: A retrospective analysis of 319 cases,“ Clinical hemorheology and microcirculation, vol. 70, no. 2, pp. 191–200, 2018.

[4] A. J. Lin, S. J. Karinja, J. L. Bernstein, et al., „In Search of a Murine Model of Radiation-Induced Periprosthetic Capsular Fibrosis,“ Annals of plastic surgery, vol. 80, no. 4 Suppl 4, pp. S204-S210, 2018.

[5] M. Oliveira-Cunha, D. J. Malde, A. Aldouri, G. Morris-Stiff, K. V. Menon, A. M. Smith, „Results of pancreatic surgery in the elderly: is age a barrier?,“ HPB : the official journal of the International Hepato Pancreato Biliary Association, vol. 15, no. 1, pp. 24–30, 2013.

[6] M. K. Diener, C. M. Seiler, I. Rossion, et al., „Efficacy of stapler versus hand-sewn closure after distal pancreatectomy (DISPACT): a randomised, controlled multicentre trial,“ The Lancet, vol. 377, no. 9776, pp. 1514–1522, 2011.

[7] C. Bassi, G. Marchegiani, C. Dervenis, et al., „The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After,“ Surgery, vol. 161, no. 3, pp. 584–591, 2017.

[8] T. Vuorela, M. Mustonen, A. Kokkola, C. Haglund, H. Seppanen, „Impact of pasireotide on postoperative pancreatic fistulas following distal resections,“ Langenbeck#s Archives of Surgery, 2021.

[9] Y. Jiang, Q. Chen, Y. Shao, et al., „The prognostic value of external vs internal pancreatic duct stents after pancreaticoduodenectomy in patients with FRS ≥ 4: a retrospective cohort study,“ BMC Surgery, 2021.

[10] D. López-Guerra, J. Santos-Naharro, A. Rojas-Holguín, I. Jaen-Torrejimeno, A. Prada-Villaverde, G. Blanco-Fernández, „Postoperative bleeding and biliary leak after liver resection: A cohort study between two different fibrin sealant patches,“ Scientific reports, vol. 9, no. 1, pp. 12001, 2019.

[11] L. Fernández-Cruz, „Distal pancreatic resection: technical differences between open and laparoscopic approaches,“ HPB : the official journal of the International Hepato Pancreato Biliary Association, vol. 8, no. 1, pp. 49–56, 2006.

[12] R. M. Eickhoff, A. Kroh, K. Rübsamen, et al., „AK03, a new recombinant fibrinogenase prevents abdominal adhesions in a rat model without systemic side effects,“ The Journal of surgical research, vol. 222, pp. 85–92, 2018.

[13] U. Klinge, J.-K. Park, B. Klosterhalfen, „‚The ideal mesh?‘,“ Pathobiology : journal of immunopathology, molecular and cellular biology, vol. 80, no. 4, pp. 169–175, 2013.

[14] Z. C. Liu, W. P. de Lange, K. R. Bryan, „Estuary rejuvenation in response to sea level rise: an example from Tairua Estuary, New Zealand,“ Geo-Mar Lett, vol. 40, no. 2, pp. 269–280, 2020.

[15] R. M. Eickhoff, A. Kroh, S. Eickhoff, et al., „A peritoneal defect covered by intraperitoneal mesh prosthesis effects an increased and distinctive foreign body reaction in a minipig model,“ Journal of biomaterials applications, vol. 35, no. 6, pp. 732–739, 2021.

[16] S. Konar, R. Guha, B. Kundu, et al., „Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion,“ Hernia : the journal of hernias and abdominal wall surgery, vol. 21, no. 1, pp. 125–137, 2017.

[17] S. D. Kozusko, X. Liu, C. A. Riccio, et al., „Selecting a free flap for soft tissue coverage in lower extremity reconstruction,“ Injury, vol. 50 Suppl 5, pp. S32-S39, 2019.

[18] D. Steiner, R. E. Horch, I. Ludolph, M. Schmitz, J. P. Beier, A. Arkudas, „Interdisciplinary Treatment of Breast Cancer After Mastectomy With Autologous Breast Reconstruction Using Abdominal Free Flaps in a University Teaching Hospital-A Standardized and Safe Procedure,“ Frontiers in oncology, vol. 10, pp. 177, 2020.

[19] F. Simonacci, N. Bertozzi, M. P. Grieco, E. Grignaffini, E. Raposio, „Procedure, applications, and outcomes of autologous fat grafting,“ Annals of medicine and surgery (2012), vol. 20, pp. 49–60, 2017.

[20] M. D. Moncrieff, K. Spira, J. R. Clark, et al., „Free flap reconstruction for melanoma of the head and neck: indications and outcomes,“ Journal of plastic, reconstructive & aesthetic surgery : JPRAS, vol. 63, no. 2, pp. 205–212, 2010.

[21] E. M. Balk, A. Earley, E. A. Avendano, G. Raman, „Long-Term Health Outcomes in Women With Silicone Gel Breast Implants: A Systematic Review,“ Annals of internal medicine, vol. 164, no. 3, pp. 164–175, 2016.

[22] A. Weigand, R. E. Horch, A. M. Boos, J. P. Beier, A. Arkudas, „The Arteriovenous Loop: Engineering of Axially Vascularized Tissue,“ European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes, vol. 59, no. 3-4, pp. 286–299, 2018.

[23] A. Arkudas, J. Tjiawi, O. Bleiziffer, et al., „Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model,“ Molecular medicine (Cambridge, Mass.), vol. 13, no. 9-10, pp. 480–487, 2007.

[24] A. M. Boos, J. S. Loew, A. Weigand, et al., „Engineering axially vascularized bone in the sheep arteriovenous-loop model,“ Journal of tissue engineering and regenerative medicine, vol. 7, no. 8, pp. 654–664, 2013.

[25] F. F. Bitto, D. Klumpp, C. Lange, et al., „Myogenic differentiation of mesenchymal stem cells in a newly developed neurotised AV-loop model,“ BioMed research international, vol. 2013, pp. 935046, 2013.

[26] B. M. Sicari, C. L. Dearth, S. F. Badylak, „Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury,“ Anatomical record (Hoboken, N.J. : 2007), vol. 297, no. 1, pp. 51–64, 2014.

[27] P. Faglin, M. Gradwohl, C. Depoortere, et al., „Rationale for the design of 3D-printable bioresorbable tissue-engineering chambers to promote the growth of adipose tissue,“ Scientific reports, vol. 10, no. 1, pp. 11779, 2020.

[28] T. Ruhl, G. Storti, N. Pallua, „Proliferation, Metabolic Activity, and Adipogenic Differentiation of Human Preadipocytes Exposed to 2 Surfactants In Vitro,“ Journal of pharmaceutical sciences, vol. 107, no. 5, pp. 1408–1415, 2018.

[29] I. Rosadi, K. Karina, I. Rosliana, et al., „In vitro study of cartilage tissue engineering using human adipose-derived stem cells induced by platelet-rich plasma and cultured on silk fibroin scaffold,“ Stem cell research & therapy, vol. 10, no. 1, pp. 369, 2019.

[30] M. Keck, D. Haluza, H. F. Selig, et al., „Adipose tissue engineering: three different approaches to seed preadipocytes on a collagen-elastin matrix,“ Annals of plastic surgery, vol. 67, no. 5, pp. 484–488, 2011.

[31] N. Torio-Padron, N. Baerlecken, A. Momeni, G. B. Stark, J. Borges, „Engineering of adipose tissue by injection of human preadipocytes in fibrin,“ Aesthetic plastic surgery, vol. 31, no. 3, pp. 285–293, 2007.

[32] H. Zhang, L. Zhou, W. Zhang, „Control of scaffold degradation in tissue engineering: a review,“ Tissue engineering. Part B, Reviews, vol. 20, no. 5, pp. 492–502, 2014.

[33] T. P. Nguyen, Q. V. Nguyen, V.-H. Nguyen, et al., „Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review,“ Polymers, vol. 11, no. 12, 2019.

[34] R. Gautam, A. Jain, S. Kapoor, „Silk Protein based Novel Matrix for Tissue Engineering Applications,“ Indian Journal of Science and Technology, vol. 10, no. 31, pp. 1–7, 2017.

[35] C. Vepari, D. L. Kaplan, „Silk as a Biomaterial,“ Progress in polymer science, vol. 32, no. 8-9, pp. 991–1007, 2007.

[36] J. G. Hardy, T. R. Scheibel, „Composite materials based on silk proteins,“ Progress in polymer science, vol. 35, no. 9, pp. 1093–1115, 2010.

[37] H. J. Park, O. J. Lee, M. C. Lee, et al., „Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction,“ International journal of biological macromolecules, vol. 78, pp. 215–223, 2015.

[38] T. Bleck; M. Bossle, „Kollagen, URL: http://www.spektrum.de/lexikon/biologie-kompakt/kollagen/6536.

[39] C. U. Lau, „Biologische und physikochemische Charakterisierung sowie 3D-Wachstum von Zellen auf Matrices aus nativem Kollagen für den Einsatz in der Medizin, 2005.

[40] J. Glowacki, S. Mizuno, „Collagen scaffolds for tissue engineering,“ Biopolymers, vol. 89, no. 5, pp. 338–344, 2008.

[41] H. F. Hildebrand, F. Rocher, F. Monchau, E. Delcourt-Debruyne, „Kollagen – Aufbereitung und Eigenschaften als Biomaterial,“ Biomaterialien, no. 3, 2002.

[42] Y. Qi, H. Wang, K. Wei, et al., „A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures,“ International journal of molecular sciences, vol. 18, no. 3, 2017.

[43] Gran View Research: Soft Tissue Repair Market Size, Share & Trends Analysis Report By Product Type [Fixation Products (Suture, Suture Anchors), Tissue Patch/Mesh (Biological, Synthetic)], By Application, By Region, And Segment Forecasts, 2018 – 2025

Vertical 3
[1] Schemitsch EH. Size Matters: Defining Critical in Bone Defect Size! J Orthop Trauma. 2017. Volume 31. Suppl 5. p.20-22. https://doi:10.1097/BOT.0000000000000978.

[2] Davis, E., et al. Secondary Union of a Critical Segmental Femoral Defect, JBJS Case Con-nector: December 2018. Volume 8. Issue 4.p e87. https://doi:10.2106/JBJS.CC.17.00302

[3] Niinomi, M. 5 – Fatigue failure of metallic biomaterials. In Woodhead Publishing Series in Bio-materials,Metals for Biomedical Devices (Second Edition). 2019. p. 153-188. https://doi.org/10.1016/B978-0-08-102666-3.00005-5.

[4] Prasad, A. State of art review on bioabsorbable polymeric scaffolds for bone tissue engineer-ing. In Materials Today: Proceedings. 2021. https://doi.org/10.1016/j.matpr.2020.11.622.

[5] Daghino, W., et al. Bioabsorbable implants in foot trauma surgery. In International Journal of the Care of the Injured. 2019. Volume 50. Suppl 4. p.47-55. https://doi.org/10.1016/j.in-jury.2019.01.016

[6] Bose, S., et al. Influence of random and designed porosities on 3D printed tricalcium phos-phate-bioactive glass scaffolds. In Additive Manufacturing. 2021. Volume 40. 101895. https://doi.org/10.1016/j.addma.2021.101895

[7] Yoshizawa, S., et al. Magnesium ion stimulation of bone marrow stromal cells enhances oste-ogenic activity, simulating the effect of magnesium alloy degradation. In Acta Biomaterialia. 2014. Volume 10. Issue 6. p. 2834-2842. https://doi.org/10.1016/j.actbio.2014.02.002

[8] Xiong, K., et al. Zinc doping induced differences in the surface composition, surface morphol-ogy and osteogenesis performance of the calcium phosphate cement hydration products In Ma-terials Science and Engineering: C. 2019. Volume 40. 110065. https://doi.org/10.1016/j.msec.2019.110065

[9] Ni, J., et al. Three-dimensional printing of metals for biomedical applications. In Materials To-day Bio. 2019. Volume 3. 100024. https://doi.org/10.1016/j.mtbio.2019.100024

[10] Moon, S.H., et al. Anti-cancer activity of ZnO chips by sustained zinc ion release. In Toxicol-ogy Reports. 2016. Volume 3. p. 430-438. https://doi.org/10.1016/j.toxrep.2016.03.008

[11] Smerdel-Ramoya, A., et al. Skeletal Overexpression of Connective Tissue Growth Factor Impairs Bone Formation and Causes Osteopenia. In Endocrinology. 2008. Volume 149. Issue 9. P. 4374-4381. https://doi.org/10.1210/en.2008-0254

[12] Dempster, D.W., et al. Standardized nomenclature, symbols, and units for bone histomor-phometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Commit-tee. In Journal of Bone and Mineral Research. 2012. https://doi.org/10.1002/jbmr.1805

[13] Dimitriou, R., et al. Bone regeneration: current concepts and future directions. In BMC Med-icine. 2011. Volume 9. Article 66. https://doi.org/10.1186/1741-7015-9-66

[14] Campana, V., et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. In Journal of Material Sciences: Materials in Medicine. 2014. Volume 25. p. 2445–2461. https://doi.org/10.1007/s10856-014-5240-2

[15] Bauer, T.W., and Muschler, G.F. Bone graft materials. An overview of the basic science. In Clin Orthop Relat Res. 2000. Volume 371. PubMed ID: 10693546

[16] Jahangir, A.A. & Nunley, Ryan & Mehta, S. & Sharan, Alok.. Bone-graft substitutes in ortho-paedic surgery. AAOS Now. 2. 2008

[17] GlobalData, MediPoint: Bone Grafts and Substitutes – Global Analysis and Market Forecasts, 2014

[18] Nauth, A., et al. Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treat-ment?. In Journal of Orthopaedic Trauma: March 2018 – Volume 32 – Issue – p S7-S11 doi: 10.1097/BOT.0000000000001115

[19] Schemitsch, E.H. Size Matters: Defining Critical in Bone Defect Size! In Jorunal of Orthopae-dic Trauma. 2017. Suppl.5, p.20-22. https://doi.org/10.1097/BOT.0000000000000978

[20] Haines, N.M., et al. Defining the Lower Limit of a “Critical Bone Defect” in Open Diaphyseal Tibial Fractures. In Journal of Orthopaedic Trauma. 2016. Volume 30. Issue 5. P. e158-e163. https://doi.org/10.1097/BOT.0000000000000531

[21] Höntzsch, D. Fixateur-externe-Osteosynthese: External fixation osteosynthesis. In Der Or-thopäde. 2010. Volume 39. p.192-200. https://doi.org/10.1007/s00132-009-1523-6

[22] Smith, T., et al. Arthroskopische posteriore Schulterstabilisierung mit Knochenblock und Kap-selrekonstruktion: Arthroscopic posterior shoulder stabilization with an iliac bone graft and cap-sular repair. In Operative Orthopädie und Traumatologie. 2015. Volume 27. p. 63-73. https://doi.org/10.1007/s00064-013-0267-y

[23] Lui, Y., et al. Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. In Advanced Functional Materials. 2019. https://doi.org/10.1002/adfm.201805402

[24] Schrenk, S.: Abbauverhalten biodegradierbarer Magnesiumlegierungen in körperähnlichen Elektrolyten. Dissertation. Erlangen-Nürnberg, 2011

[25] Zheng, Y.F., Gu, X.N, and Witte, F. Biodegradable metals. In Materials Science and Engi-neering: R: Reports. 2014. Volume 77. p. 1-34. https://doi.org/10.1016/j.mser.2014.01.001

[26] Qin, Y., et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives. In Acta Biomaterialia. 2019. Volume 98. https://doi.org/10.1016/j.actbio.2019.04.046

[27] Sing, S. L., An, J., and Yeong, W.Y. Laser and electron‐beam powder‐bed additive manufac-turing of metallic implants: A review on processes, materials and designs. In Orthopaedic Re-search. 2016. Volume 34. Issue 3. https://doi.org/10.1002/jor.23075

[28] Bone Growth Stimulators Market by Product (Bone Growth Stimulation Devices, Bone Mor-phogenetic Proteins, and Platelet-Rich Plasma), Application (Spinal Fusion Surgeries, Delayed Union & Nonunion Bone Fractures, Oral & Maxillofacial Surgeries, and Others), and Distribution Channel (Hospitals & Clinics, Home Care, and Others): Global Opportunity Analysis and Indus-try Forecast, 2019–2026

[29] Bone Growth Stimulators Market by Product (Bone Growth Stimulation Devices, Bone Mor-phogenetic Proteins, and Platelet-Rich Plasma), Application (Spinal Fusion Surgeries, Delayed Union & Nonunion Bone Fractures, Oral & Maxillofacial Surgeries, and Others), and Distribution Channel (Hospitals & Clinics, Home Care, and Others): Global Opportunity Analysis and Indus-try Forecast, 2019–2026

[30] Mordor Intelligence: Orthopedic Devices Market – Growth, Trends, COVID-19 Impact, and Forecasts (2021 – 2026)

[31] Grand View Research: Dental Biomaterials Market Size, Share & Trends Analysis Report By Type (Metallic, Ceramic, Polymeric), By Application (Orthodontics, Implantology, Prostho-dontics), By End Use, By Region, And Segment Forecasts, 2020 – 2027

Vertical 4
[1] Deutscher Herzbericht 2019

[2] Colombo A, Karvouni E. Biodegradable stents: „fulfilling the mission and stepping away“. Circulation. 2000;102(4):371-3. doi: 10.1161/01.cir.102.4.371

[3] Ormiston J, Webster M. Absorbable coronary stents. Lancet. 2007 Jun 2;369(9576):1839-1840. doi: 10.1016/S0140-6736(07)60829-0

[4] Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater. 2018 Sep;7(3):175-205. doi: 10.1007/s40204-018-0097-y

[5] RITS, J., J. A. VAN HERWAARDEN, A. K. JAHROME, D. KRIEVINS u. F. L. MOLL(2008): The Incidence of Arterial Stent Fractures with Exclusion of Coronary, Aortic, and Nonarterial Settings. Eur. J. Endovasc. Surg., 36, 339-345 https://doi.org/10.1016/j.ejvs.2008.05.005

[6] CANAN, T. u. M. S. LEE (2010): Drug-eluting stent fracture: incidence, contributing factors, and clinical implications. Catheter. Cardiovasc. Interv., 75(2), 237-45, DOI: 10.1002/ccd.22212

[7] TOMIZAWA, Y., T. HANAWA, D. KURODA, H. NISHIDA u. M. ENDO (2006): Corrosion of stainless steel sternal wire after long-term implantation. J. Artif. Organs, 9(1), 61-66, https://doi.org/10.1007/s10047-005-0321-0

[8] Cockerill I, See CW, Young ML, Wang Y, Zhu D. Designing Better Cardiovascular Stent Materials – A Learning Curve. Adv Funct Mater. 2021 Jan 4;31(1):2005361. doi: 10.1002/adfm.202005361

[9] Gulden Camci-Unal, Nasim Annabi, Mehmet R Dokmeci, Ronglih Liao and Ali Khademhosseini. Hydrogels for cardiac tissue engineering. NPG Asia Materials (2014) 6, e99; doi:10.1038/am.2014.19

[10] Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M. Fibrin gel — advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2001 Apr;19(4):424-30. doi: 10.1016/s1010-7940(01)00624-8.

[11] Weber M, Gonzalez de Torre I, Moreira R, Frese J, Oedekoven C, Alonso M, Rodriguez Cabello CJ, Jockenhoevel S, Mela P. Multiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves. Tissue Eng Part C Methods. 2015 Aug;21(8):832-40. doi: 10.1089/ten.TEC.2014.0396

[12] EP 2 515 960 B1

[13] Marked Research Report, MD 3726, veröffentlicht August 2017

[14] Jockenhoevel S. The role of textile engineering in regenerative medicine. Biomed Tech (Berl). 2018 Jun 27;63(3):219-220. doi: 10.1515/bmt-2018-0078.

[15] Cardiovascular Devices Market By Product (Diagnostic-Monitoring: ECG, Holter monitors, Event monitors, Implantable loop recorders, Echocardiogram, PET, MRI, CT, Doppler fetal monitor; Surgical: Pacemakers, Stents, Cannulae, Electrosurgical procedures, Valves, Occlusion devices), And Segment Forecasts To 2024

Vertical 5
[1] Stifterverband für die deutsche Wissenschaft e.V. / McKinsey & Company (2018): Future Skills: strategische Potenziale für Hochschulen, Diskussionspapier 3, S. 5f.

[2] Stifterverband für die deutsche Wissenschaft e.V. (2016): Hochschul-Bildungs-Report 2020, Hochschulbildung für die Arbeitswelt 4.0, Jahresbericht 2016, S. 10, online verfügbar unter: http://www.hochschulbildungsreport.de/downloads, Zugriff am 17.03.2021.

[3] Roland Berger (2015): Die digitale Transformation der Industrie – Was sie bedeutet. Wer gewinnt. Was jetzt zu tun ist. Studie mit dem Bundesverband der deutschen Industrie e.V. (BDI), online im Internet unter: https://bdi.eu/media/user_upload/Digitale_Transformation.pdf, Zugriff am Zugriff am 17.03.2021.

[4] Fachverband Biomedizinische Technik e.V., ThBösel (2018): Startseite des Fachverbandes, online im Internet unter: https://www.fbmt.de/home/, Zugriff am Zugriff am: 19. 09. 2020.

[5] Stifterverband für die deutsche Wissenschaft e.V. / McKinsey & Company (2018): Future Skills: strategische Potenziale für Hochschulen, Diskussionspapier 3, S. 3f.

[6] Stifterverband für die deutsche Wissenschaft e.V. / McKinsey & Company (2020): Hochschulbildungsreport, Jahresbericht 2019, S. 54f.